科学家“一锅”催出乙醇

网络 林晓舟 2019-06-20 09:32  阅读量:18268   
科学家“一锅”催出乙醇 产业化应用还需打造“全链条”

 

■本报见习记者 程唯珈 记者 刘万生 通讯员 杨曼

以秸秆、农作物壳皮茎秆、树叶、林业边角余料和城乡有机垃圾等纤维为原料生产的纤维素乙醇,解决了生物燃料与粮食争地、与人争食的问题,被称为第二代生物燃料。别看它的原料廉价易得,其制备工艺可不简单。

近日,中国科学院院士张涛和中国科学院大连化学物理研究所研究员王爱琴课题组基于多步串联反应策略,发展了一种新的化学催化方法,可将纤维素“一锅”高效转化为乙醇。相关成果近日发表于《焦耳》。

生物燃料的“宠儿”

作为自然界最丰富的生物质资源,大量来源于农林废弃物的纤维素和半纤维素用途广泛。其因不可食用的特征,在可再生碳资源中备受关注,成为科学家制备生物燃料和化学品的“宠儿”。

由此制成的纤维素乙醇就是其中之一。“纤维素乙醇是一种重要的生物燃料,将其与汽油按照一定的比例混合,可形成新一代清洁环保车用燃油,能降低汽车尾气如一氧化碳、碳氢化合物等污染物的排放。”王爱琴告诉《中国科学报》。

纤维素是以葡萄糖为基本结构单元、通过β-1,4糖苷键形成的高分子聚合物。由于纤维素分子间和分子内存在大量的氢键,能形成一个天然的网络结构保护其内部的β-1,4糖苷键不受攻击。虽然具有天然抗逆性,但也极大阻碍了其生物转化。

王爱琴表示,传统上科学家多用生物发酵的手段进行转化,但纤维素酶价格昂贵、容易中毒,所以商业化过程一直面临技术经济上的挑战。

在各种生物质转化路线中,化学催化转化具有效率高、与现有化工基础设施容易对接的独特优势,颇受科研人员青睐。

“在生物质催化转化的研究中,其中一个主要研究方向就是选择性断裂生物质大分子中的C-C键和C-O键,从而得到重要的小分子化合物,包括醇、醛、酸等。这也是我们组多年的研究方向。”王爱琴介绍,团队于2008年首创了纤维素氢解制乙二醇的催化转化反应,发现了含W化合物在催化纤维素C-C键选择性断裂反应中的独特作用,并提出纤维素先氧化酯化、再加氢还原制备乙醇的二步法。

随后,团队又发现由氧化钨负载铂的金属—酸双功能催化剂可以有效选择性氢解甘油中的C-O键,为新型催化剂的制备提供了理论基础。

那么,是否可以设计这样一种多功能催化剂,让其耦合纤维素C-C键断裂到乙二醇与乙二醇C-O键断裂到乙醇的反应,从而“一锅”高效催化纤维素生成乙醇呢?科学家期待着答案。

乙醇转化“马力全开”

基于此构想,团队首先设计制备了Pt/WOx金属—酸双功能催化剂,在反应釜中于250摄氏度、6MPa氢气的反应条件下,考察了该催化剂对于纤维素氢解反应的性能。

结果表明,该催化剂确实可以氢解纤维素生成乙醇,但是乙醇收率并不理想。

论文第一作者、中科院大连化物所博士杨曼告诉《中国科学报》,经过多次尝试,实验人员发现过渡金属Mo的引入可以加足收率“马力”,同时催化剂的催化活性与Mo的负载量和负载顺序有着密切关系。

“只有当Mo/Pt原子比为0.1时,且先载Pt后载Mo时,才能获得高的乙醇收率 (最优乙醇收率41.3 %)。并且,纤维素制乙醇的‘一锅’反应对Mo/Pt原子比的依赖关系与乙二醇氢解制乙醇的规律完全一致,说明后者是动力学决速步骤,且是结构敏感反应。”她说。

为了探究构效关系,随后实验人员进行了XAFS、Raman等多种光谱表征,提出MoO5-Pt-WOx活性位结构。

杨曼介绍,MoO5呈现配位不饱和的单分散形式,通过与纳米Pt表面的相互作用,进而调变Pt-WOx的电子相互作用,促进乙二醇氢解为乙醇的反应。而过多的Mo形成了Mo-O-Mo物种覆盖表面的Pt活性位,因此降低了反应活性。

尽管难题得到了解决,但究竟是什么制约了乙醇的收率呢?为此,团队将目光转向原生生物质的催化转化反应。

实验发现,当以玉米秸秆、芒草和桦木屑为原料时,在不对其进行任何预处理的情况下,获得乙醇收率分别为25.2 %、26.3 % 和29.0 %——说明木质素的存在影响了纤维素的转化。而当用适当的预处理方法除去芒草中的大部分木质素后,乙醇收率可以达到40%以上。

随后,实验人员对催化剂的抗CO中毒性能和循环稳定性能进行了研究。“有意思的是,当使用含有0.5%CO的H2时,Mo/Pt/WOx催化剂表现出了优异的抗CO中毒性能,乙醇收率依然可以保持在41%,这主要归因于Pt和WOx之间较强的电子相互作用抑制了CO的吸附。而在循环稳定性的测试中,由于Mo/Pt/WOx催化剂中WOx结构的不稳定,导致了Pt的聚集。”王爱琴说。

最终,实验人员采用了稳定性更好的Pt/WOx/Al2O3催化剂。通过搭配钨酸,该催化剂可以重复循环5次保持乙醇收率不变,具有高效且连续化生产等特点。

“催”生产业新未来

据了解,截至2018年,我国燃料乙醇产能已达到290万吨。然而2018年我国汽油总消费量高达1.3亿吨,若全部按现行10%掺混标准,生物燃料乙醇需求量将达到1300万吨,供需缺口极大。

王爱琴表示,团队创制的新型催化剂,可同时催化断裂纤维素中的C-C键和C-O键,从而可从纤维素直接氢解获得乙醇,大大提高了转化效率。同时,催化剂优异的抗CO中毒性能和循环稳定性使其在未来的实际应用中具有较大的潜力。

然而,若想投入产业化应用还需打造“全链条”制备体系。“纤维素乙醇产业化是一个典型的系统工程,从原料收集到秸秆预处理,从催化剂的筛选到反应器结构设计,从纤维素/半纤维素的转化到秸秆全质化利用,从工艺路线设计到工程化放大,涉及众多的学科和领域,需要系统的技术集成和全面整合资源。”王爱琴说。

“我们将在现有研究基础上,进一步优化催化剂和工艺条件,努力获得具有实用价值的高活性、高选择性和高稳定性催化剂。”她表示,团队正致力于与相关企业合作,将该技术推向市场应用。

相关论文信息:DOI:10.1016/j.joule.2019.05.020

《中国科学报》 (2019-06-20 第1版 要闻)

郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。